Clean technology cost projections: investment and levelized costs of solar, wind, battery, and hydrogen
Prina, M. G., Manzolini, G., Moser, D., Nastasi, B. & Sparber, W. Classification and challenges of bottom-up energy system models – A review. Renewable and Sustainable Energy Reviews 129, 109917 (2020).
Google Scholar
Majidi, H. et al. Overview of energy modeling requirements and tools for future smart energy systems. Renewable and Sustainable Energy Reviews 212, 115367 (2025).
Google Scholar
Ringkjøb, H. K., Haugan, P. M. & Solbrekke, I. M. A review of modelling tools for energy and electricity systems with large shares of variable renewables. Renewable and Sustainable Energy Reviews 96, (2018).
Creutzig, F., Hilaire, J., Nemet, G., Müller-Hansen, F. & Minx, J. C. Technological innovation enables low cost climate change mitigation. Energy Research and Social Science 105, (2023).
Pfenninger, S., DeCarolis, J., Hirth, L., Quoilin, S. & Staffell, I. The importance of open data and software: Is energy research lagging behind? Energy Policy 101 (2017).
Vargas-Ferrer, P., Álvarez-Miranda, E., Tenreiro, C. & Jalil-Vega, F. Assessing flexibility for integrating renewable energies into carbon neutral multi-regional systems: The case of the Chilean power system. Energy for Sustainable Development 70 (2022).
Way, R., Ives, M. C., Mealy, P. & Farmer, J. D. Empirically grounded technology forecasts and the energy transition. Joule 6 (2022).
Xiao, M., Junne, T., Haas, J. & Klein, M. Plummeting costs of renewables – Are energy scenarios lagging? Energy Strategy Reviews 35 (2021).
Osorio-Aravena, J. C. et al. Insights for informing energy transition policies – Are decision makers listening to science? The case of Chile. Energy Strategy Reviews 58, 101644 (2025).
Google Scholar
Aghahosseini, A. et al. Energy system transition pathways to meet the global electricity demand for ambitious climate targets and cost competitiveness. Appl Energy 331, 120401 (2023).
Google Scholar
Creutzig, F. et al. The underestimated potential of solar energy to mitigate climate change. Nature Energy 11, (2017).
Köberle, A. C. et al. The cost of mitigation revisited. Nature Climate Change 11, pp. 1035–1045, (2021)
Zegeer, M. L., Peer, R. A. M. & Haas, J. Can residential energy systems withstand the heat? Quantifying solar photovoltaic and heat pump yields for future New Zealand climate conditions. Environmental Research: Infrastructure and Sustainability 5, 015012 (2025).
Google Scholar
Scholz, Y., Gils, H. C. & Pietzcker, R. C. Application of a high-detail energy system model to derive power sector characteristics at high wind and solar shares. Energy Econ 64, 568–582 (2017).
Google Scholar
McPherson, M., Mehos, M. & Denholm, P. Leveraging concentrating solar power plant dispatchability: A review of the impacts of global market structures and policy. Energy Policy 139, 111335 (2020).
Google Scholar
Schmidt, O., Melchior, S., Hawkes, A. & Staffell, I. Projecting the Future Levelized Cost of Electricity Storage Technologies. Joule 3, 81–100 (2019).
Google Scholar
Ardashir, J. F. & Ghadim, H. V. Large-scale energy storages in joint energy and ancillary multimarkets. Energy Storage in Energy Markets: Uncertainties, Modelling, Analysis and Optimization 265–285 (2021).
Handique, A. J., Peer, R. A. M. & Haas, J. Understanding the Challenges for Modelling Islands’ Energy Systems and How to Solve Them. Current Sustainable/Renewable Energy Reports 11, 95–104 (2024).
Google Scholar
Vatankhah Ghadim, H., Peer, R. A. M., Read, E. G. & Haas, J. How much hydrogen could we need in New Zealand? Understanding the diverse hydrogen applications and their regional mapping. J R Soc N Z (2024).
Sterner, M. & Specht, M. Power-to-Gas and Power-to-X—The History and Results of Developing a New Storage Concept. Energies 14, 6594 (2021).
Google Scholar
Breyer, C., Lopez, G., Bogdanov, D. & Laaksonen, P. The role of electricity-based hydrogen in the emerging power-to-X economy. Int J Hydrogen Energy 49, 351–359 (2024).
Google Scholar
Pieńkowski, D. Is nuclear energy really sustainable? A critical analysis on the example of the Polish energy transition plan. Energy for Sustainable Development 78, 101376 (2024).
Google Scholar
Bennett, A. & Serrenho, A. C. The Potential Role of Hydrogen in Decarbonization: Exploring Global Supply Chain Impacts and Hydrogen Use in the United Kingdom. Environ Sci Technol (2025).
Vatankhah Ghadim, H., Canessa, R., Haas, J. & Peer, R. Electrolyzer cost projections compared to actual market costs: A Critical Analysis. in IEEE PES ISGT ASIA 2023 IEEE proceedings 5 (IEEE, Auckland, 2023).
Vatankhah Ghadim, H. et al. Are we too pessimistic? Cost projections for solar photovoltaics, wind power, and batteries are over-estimating actual costs globally. Appl Energy (2025).
OEDI. Utility-Scale PV | Technologies | Electricity | ATB | NREL. (2020).
IEA PVPS. Snapshot of Global PV Markets 2025 Task 1 Strategic PV Analysis and Outreach PVPS. (2025).
Jäger-Waldau, A. Snapshot of photovoltaics − March 2025. EPJ Photovoltaics 16, 22 (2025).
Google Scholar
OEDI. 2024 Annual Technology Baseline (ATB) Cost and Performance Data for Electricity Generation Technologies. Open Energy Data Initiative (OEDI) (2024).
OEDI. 2023 Annual Technology Baseline (ATB) Cost and Performance Data for Electricity Generation Technologies. Open Energy Data Initiative (OEDI) (2023).
OEDI. 2022 Annual Technology Baseline (ATB) Cost and Performance Data for Electricity Generation Technologies. Open Energy Data Initiative (OEDI) (2022).
OEDI. 2021 Annual Technology Baseline (ATB) Cost and Performance Data for Electricity Generation Technologies. Open Energy Data Initiative (OEDI) (2021).
OEDI. 2020 Annual Technology Baseline (ATB) Cost and Performance Data for Electricity Generation Technologies. Open Energy Data Initiative (OEDI) (2020).
OEDI. 2019 Annual Technology Baseline (ATB) Cost and Performance Data for Electricity Generation Technologies. Open Energy Data Initiative (OEDI) (2019).
OEDI. 2018 Annual Technology Baseline (ATB) Cost and Performance Data for Electricity Generation Technologies. Open Energy Data Initiative (OEDI) (2018).
OEDI. 2017 Annual Technology Baseline (ATB) Cost and Performance Data for Electricity Generation Technologies. Open Energy Data Initiative (OEDI) (2017).
OEDI. 2016 Annual Technology Baseline (ATB) Cost and Performance Data for Electricity Generation Technologies. Open Energy Data Initiative (OEDI) (2016).
OEDI. 2015 Annual Technology Baseline (ATB) Cost and Performance Data for Electricity Generation Technologies. Open Energy Data Initiative (OEDI) (2015).
IEA. World Energy Outlook 2024. (2024).
IEA. World Energy Outlook 2023. (2023).
IEA. World Energy Outlook 2022. (2022).
IEA. World Energy Outlook 2021. (2021).
IEA. World Energy Outlook 2020. (2020).
IEA. World Energy Outlook 2019. (2019).
IEA. World Energy Outlook 2018. (2018).
IEA. World Energy Outlook 2017. (2017).
IEA. World Energy Outlook 2016. (2016).
IEA. World Energy Outlook 2015. (2015).
IEA. World Energy Outlook 2014. (2014).
IEA. World Energy Outlook 2013. (2013).
IEA. World Energy Outlook 2012. (2012).
IEA. World Energy Outlook 2011. (2011).
IEA. World Energy Outlook 2010. (2010).
IEA. World Energy Outlook 2009. (2009).
IEA. World Energy Outlook 2008. (2008).
IEA. World Energy Outlook 2006. (2006).
IEA. World Energy Outlook 2004. (2004).
IEA. World Energy Outlook 2003. (2003).
IEA. World Energy Outlook 2002. (2002).
IEA. World Energy Outlook 2001. (2001).
Breyer, C. et al. Reflecting the energy transition from a European perspective and in the global context—Relevance of solar photovoltaics benchmarking two ambitious scenarios. Progress in Photovoltaics: Research and Applications 31 (2023).
BNEF. Hydrogen Economy Outlook. Bloomberg New Energy Finance (2020).
BNEF. New Energy Outlook 2021. BNEF (2021).
BNEF. Lithium-Ion Battery Pack Prices Hit Record Low of $139/kWh. BNEF (2023).
BP. BP Energy Outlook 2022 edition. British Petroleum 109, (2022).
Gordon, D. Battery market forecast to 2030: Pricing, capacity, and supply and demand. E Source (2022).
DEA. Technology Data for Generation of Electricity and District Heating. Danish Energy Agency (2025).
Graham, P., Hayward, J. & Foster, J. GenCost 2024-25 Consultation Draft. www.csiro.au/en/contact (2025).
Kost, C., Müller, P., Sepúlveda Schweiger, J., Fluri, V. & Thomsen, J. Levelized Cost of Electricity – Renewable Energy Technologies (Jul. 2024). www.ise.fraunhofer.de (2024).
Graham, P., Hayward, J. & Foster, J. GenCost 2023-24 Final Report. www.csiro.au/en/contact (2024).
Graham, P., Hayward, J., Foster, J. & Havas, L. GenCost 2022-23 Final Report. www.csiro.au/en/contact (2023).
Bogdanov, D. et al. Energy transition for Japan: Pathways towards a 100% renewable energy system in 2050. IET Renewable Power Generation 17 (2023).
Mandys, F., Chitnis, M. & Silva, S. R. P. Levelized cost estimates of solar photovoltaic electricity in the United Kingdom until 2035. Patterns 4 (2023).
Neumann, F., Zeyen, E., Victoria, M. & Brown, T. The potential role of a hydrogen network in Europe. Joule 7 (2023).
Transpower. TPM Determination: BBC Assumptions Book. (2023).
Sens, L., Neuling, U. & Kaltschmitt, M. Capital expenditure and levelized cost of electricity of photovoltaic plants and wind turbines – Development by 2050. Renew Energy 185 (2022).
Insel, M. A., Sadikoglu, H. & Melikoglu, M. Assessment and determination of 2030 onshore wind and solar PV energy targets of Türkiye considering several investment and cost scenarios. Results in Engineering 16 (2022).
Gulagi, A. et al. The role of renewables for rapid transitioning of the power sector across states in India. Nat Commun 13 (2022).
Makhloufi, S., Khennas, S., Bouchaib, S. & Arab, A. H. Multi-objective cuckoo search algorithm for optimized pathways for 75% renewable electricity mix by 2050 in Algeria. Renew Energy 185 (2022).
Gandhi, K., Apostoleris, H. & Sgouridis, S. Catching the hydrogen train: economics-driven green hydrogen adoption potential in the United Arab Emirates. Int J Hydrogen Energy 47 (2022).
George, J. F., Müller, V. P., Winkler, J. & Ragwitz, M. Is blue hydrogen a bridging technology? – The limits of a CO2 price and the role of state-induced price components for green hydrogen production in Germany. Energy Policy 167, 113072 (2022).
Google Scholar
Janssen, J. L. L. C. C., Weeda, M., Detz, R. J. & van der Zwaan, B. Country-specific cost projections for renewable hydrogen production through off-grid electricity systems. Appl Energy 309 (2022).
Gilmore, N. et al. Clean energy futures: An Australian based foresight study. Energy 260, 125089 (2022).
Google Scholar
Graham, P., Hayward, J., Foster, J. & Havas, L. GenCost 2021-22 Final Report. www.csiro.au/en/contact (2022).
IEA. Hydrogen in Latin America: From near-Term Opportunities to Large-Scale Deployment. Hydrogen in Latin America (2021).
Kost, C., Shammugam, S., Fluri, V., Peper, D., Memar, A. D., & Schlegel, T. Levelized Cost of Electricity – Renewable Energy Technologies. June 2021. pp. 1–45. Fraunhofer ISE. www.ise.fraunhofer.de (2021)
Robert, B. & Brown, E. B. Proyecciones de costos inversión y LCOE. (2021).
Lu, X. et al. Combined solar power and storage as cost-competitive and grid-compatible supply for China’s future carbon-neutral electricity system. Proc Natl Acad Sci USA 118 (2021).
Graham, P., Hayward, J., Foster, J. & Havas, L. GenCost 2020-21 Final Report. CSIRO (2021).
AEMO. 2021 Costs and Technical Parameter Review. (2021).
Zhang, X., Dong, X. & Li, X. Study of China’s Optimal Concentrated Solar Power Development Path to 2050. Front Energy Res 9 (2021).
UK Deparment of Business Energy & Industrial. Hydrogen Production Costs 2021. (2021).
WEC. Decarbonised Hydrogen Imports into the European Union: Challenges and Opportunities. (2021).
Repenning, J. et al. Projektionsbericht 2021 Für Deutschland. (2021).
Graham, P., Hayward, J., Foster, J. & Havas, L. GenCost 2019-20 Final Report. (2020).
MME & EPE. Plano Nacional de Energia – PNE 2050. Plano Nacional de Energia – PNE 2050 53 (2020).
Barbosa, J., Dias, L. P., Simoes, S. G. & Seixas, J. When is the sun going to shine for the Brazilian energy sector? A story of how modelling affects solar electricity. Renew Energy 162 (2020).
Ghorbani, N., Aghahosseini, A. & Breyer, C. Assessment of a cost-optimal power system fully based on renewable energy for Iran by 2050 – Achieving zero greenhouse gas emissions and overcoming the water crisis. Renew Energy 146 (2020).
ETIP. Fact Sheets about Photovoltaics (PV) – The Cost of PV Systems. European Technology & Innovation Platform (2020).
SERIS. UPDATE of the Solar Photovoltaic (PV) Roadmap for Singapore. 76, (2020).
Chaianong, A., Bangviwat, A., Menke, C., Breitschopf, B. & Eichhammer, W. Customer economics of residential PV–battery systems in Thailand. Renew Energy 146 (2020).
Mongird, K. et al. An evaluation of energy storage cost and performance characteristics. Energies. 13, 3307 (2020).
He, X. et al. Greenhouse gas consequences of the China dual credit policy. Nat Commun 11 (2020).
Vartiainen, E., Masson, G., Breyer, C., Moser, D. & Román Medina, E. Impact of weighted average cost of capital, capital expenditure, and other parameters on future utility-scale PV levelised cost of electricity. Progress in Photovoltaics: Research and Applications 28 (2020).
Deorah, S. M., Abhyankar, N., Arora, S., Gambhir, A. & Phadke, A. Estimating the Cost of Grid-Scale Lithium-Ion Battery Storage in India Energy Technologies Area Lawrence Berkeley National Laboratory. (2020).
Resch, G. et al. Market Uptake of Concentrating Solar Power in Europe: Model-Based Analysis of Drivers and Policy Trade-Offs Deliverable 8.2. uptake of concentrating solar power in Europe (final version).pdf (2020).
Mahone, A. et al. Hydrogen Opportunities in a Low-Carbon Future An Assessment Of Long-Term Market Potential in the Western United States. (2020).
Hall, W., Spencer, T., Renjith, G. & Dayal, S. The Potential Role of Hydrogen in India: A Pathway for Scaling-up Low Carbon Hydrogen across the Economy. Sustainablefinance.Hsbc.Com (2020).
Gallardo, F. I. et al. A Techno-Economic Analysis of solar hydrogen production by electrolysis in the north of Chile and the case of exportation from Atacama Desert to Japan. Int J Hydrogen Energy 46 (2021).
Peterson, D., Vickers, J. & Desantis, D. DOE Hydrogen and Fuel Cells Program Record: Hydrogen Production Cost From PEM Electrolysis 2019. DOE Hydrogen and Fuel Cells Program Record (2020).
ETIP. Fact Sheets about Photovoltaics (PV) – The Cost of PV Systems. (2019).
Tlili, O., Mansilla, C., Frimat, D. & Perez, Y. Hydrogen market penetration feasibility assessment: Mobility and natural gas markets in the US, Europe, China and Japan. Int J Hydrogen Energy 44 (2019).
ETC. China 2050: A Fully Developed Rich Net-Zero Economy. Online (2019).
Graham, P., Hayward, J., Foster, J., Story, J. & Havas, L. GenCost 2018 Final Report. (2018).
Kost, C., Shammugam, S., Jülch, V., Nguyen, H.-T. & Schlegl, T. Levelized Cost of Electricity – Renewable Energy Technologies (Mar. 2018). www.ise.fraunhofer.de (2018).
Hayward, J. A. & Graham, P. W. Electricity Generation Technology Cost Projections. (2017).
ETIP. Fact Sheets about Photovoltaics (PV) – The Cost of PV Systems. www.etip-pv.eu (2017).
Craigen, J. et al. Australian Power Generation Technology Report. www.co2crc.com.au/publications (2015).
Kost, C. et al. Levelized Cost of Electricity – Renewable Energy Technologies (Nov. 2013). www.ise.fraunhofer.de (2013).
Kost, C., Schlegl, T., Thomsen, J., Nold, S. & Mayer, J. Levelized Cost of Electricity – Renewable Energies (May 2012). www.ise.fraunhofer.de (2012).
DNV. Energy Transition Outlook 2023: A global and regional forecast to 2050. DNV, Remi Eriksen (2023).
Abbott, B. W. et al. Accelerating the Renewable Energy Revolution to Get Back to the Holocene. Earth’s Future 11, e2023EF003639, (2023).
Rozon, F., McGregor, C. & Owen, M. Long-Term Forecasting Framework for Renewable Energy Technologies’ Installed Capacity and Costs for 2050. Energies (Basel) 16 (2023).
US DoE. Financial Incentives for Hydrogen and Fuel Cell Projects. (2022).
DNV. Hydrogen Forecast to 2050 Energy Transition Outlook 2022. Dnv (2022).
Jacobson, M. Z. et al. Low-cost solutions to global warming, air pollution, and energy insecurity for 145 countries. Energy Environ Sci 15 (2022).
Reksten, A. H., Thomassen, M. S., Møller-Holst, S. & Sundseth, K. Projecting the future cost of PEM and alkaline water electrolysers; a CAPEX model including electrolyser plant size and technology development. Int J Hydrogen Energy 47, 38106–38113 (2022).
Google Scholar
IEA. Global Hydrogen Review. Global Hydrogen Review 2022 (2022).
Teske, S. et al. It is still possible to achieve the paris climate agreement: Regional, sectoral, and land-use pathways. Energies (Basel) 14 (2021).
Grant, N., Hawkes, A., Napp, T. & Gambhir, A. Cost reductions in renewables can substantially erode the value of carbon capture and storage in mitigation pathways. One Earth 4 (2021).
Bogdanov, D., Gulagi, A., Fasihi, M. & Breyer, C. Full energy sector transition towards 100% renewable energy supply: Integrating power, heat, transport and industry sectors including desalination. Appl Energy 283 (2021).
Brändle, G., Schönfisch, M. & Schulte, S. Estimating long-term global supply costs for low-carbon hydrogen. Appl Energy 302 (2021).
Wiser, R. et al. Expert elicitation survey predicts 37% to 49% declines in wind energy costs by 2050. Nat Energy 6 (2021).
Mauler, L., Duffner, F., Zeier, W. G. & Leker, J. Battery cost forecasting: A review of methods and results with an outlook to 2050. Energy and Environmental Science 14, pp. 4712–4739, (2021).
EPRI. Battery Energy Storage Lifecyle Cost Assessment Summary (2020).
Beuse, M., Steffen, B. & Schmidt, T. S. Projecting the Competition between Energy-Storage Technologies in the Electricity Sector. Joule 4 (2020).
Penisa, X. N. et al. Projecting the price of lithium-ion NMC battery packs using a multifactor learning curve model. Energies (Basel) 13 (2020).
IRENA. Hydrogen: A Renewable Energy Perspective. Report prepared for the 2nd Hydrogen Energy Ministerial Meeting in Tokyo, Japan (2020).
IEA. The Future of Hydrogen – Seizing today’s opportunities. International Energy Agency (2019).
Vatankhah Ghadim, H. Clean technologies cost projections database – V2.0 (Release July 2025). (2025).
General Electric. Accelerated growth of renewables and gas power can rapidly change the trajectory on climate change. (2021).
Osman, M. G., Strejoiu, C. V., Panait, C., Lazaroiu, A. C. & Lazaroiu, G. Microgrid Model for Evaluating the Operational Dynamics of Solar-Powered Hydrogen Production. 2024 9th International Conference on Energy Efficiency and Agricultural Engineering, EE and AE 2024 – Proceedings (2024).
Jayakumar, A., Madheswaran, D. K., Kannan, A. M., Sureshvaran, U. & Sathish, J. Can hydrogen be the sustainable fuel for mobility in India in the global context? Int J Hydrogen Energy 47, 33571–33596 (2022).
Google Scholar
Fazeli, R., Longden, T. & Beck, F. J. Dynamics of price-based competition between blue and green hydrogen with net zero emissions targets. Renewable and Sustainable Energy Reviews 210, 115244 (2025).
Google Scholar
Muratori, M. et al. The rise of electric vehicles—2020 status and future expectations. Progress in Energy 3, 022002 (2021).
Google Scholar
Chase, J. View from the Solar Industry: We Don’t Need COP26 to Shine, But What Should We Worry About? Joule 6, 495–497 (2022).
Google Scholar
Wang, W., Sun, H. & Yang, L. Analysis and Suggestions on the Scenarios of Integrated Development Between Natural Gas and Other Energy Resources Under the Goals of Peaking Carbon Emissions and Achieving Carbon Neutrality. 193–207 (2024).
Ravelli, S. Thermodynamic Assessment of Exhaust Gas Recirculation in High-Volume Hydrogen Gas Turbines in Combined Cycle Mode. J Eng Gas Turbine Power 144 (2022).
Moriarty, P. & Honnery, D. Review: The Energy Implications of Averting Climate Change Catastrophe. Energies 2023, 16, 6178 (2023).
Google Scholar
Moriarty, P. & Honnery, D. Review: Renewable Energy in an Increasingly Uncertain Future. Applied Sciences 2023 13, 388 (2022).
Google Scholar
link
