Clean technology cost projections: investment and levelized costs of solar, wind, battery, and hydrogen

Clean technology cost projections: investment and levelized costs of solar, wind, battery, and hydrogen
  • Prina, M. G., Manzolini, G., Moser, D., Nastasi, B. & Sparber, W. Classification and challenges of bottom-up energy system models – A review. Renewable and Sustainable Energy Reviews 129, 109917 (2020).

    Article 

    Google Scholar 

  • Majidi, H. et al. Overview of energy modeling requirements and tools for future smart energy systems. Renewable and Sustainable Energy Reviews 212, 115367 (2025).

    Article 

    Google Scholar 

  • Ringkjøb, H. K., Haugan, P. M. & Solbrekke, I. M. A review of modelling tools for energy and electricity systems with large shares of variable renewables. Renewable and Sustainable Energy Reviews 96, (2018).

  • Creutzig, F., Hilaire, J., Nemet, G., Müller-Hansen, F. & Minx, J. C. Technological innovation enables low cost climate change mitigation. Energy Research and Social Science 105, (2023).

  • Pfenninger, S., DeCarolis, J., Hirth, L., Quoilin, S. & Staffell, I. The importance of open data and software: Is energy research lagging behind? Energy Policy 101 (2017).

  • Vargas-Ferrer, P., Álvarez-Miranda, E., Tenreiro, C. & Jalil-Vega, F. Assessing flexibility for integrating renewable energies into carbon neutral multi-regional systems: The case of the Chilean power system. Energy for Sustainable Development 70 (2022).

  • Way, R., Ives, M. C., Mealy, P. & Farmer, J. D. Empirically grounded technology forecasts and the energy transition. Joule 6 (2022).

  • Xiao, M., Junne, T., Haas, J. & Klein, M. Plummeting costs of renewables – Are energy scenarios lagging? Energy Strategy Reviews 35 (2021).

  • Osorio-Aravena, J. C. et al. Insights for informing energy transition policies – Are decision makers listening to science? The case of Chile. Energy Strategy Reviews 58, 101644 (2025).

    Article 

    Google Scholar 

  • Aghahosseini, A. et al. Energy system transition pathways to meet the global electricity demand for ambitious climate targets and cost competitiveness. Appl Energy 331, 120401 (2023).

    Article 

    Google Scholar 

  • Creutzig, F. et al. The underestimated potential of solar energy to mitigate climate change. Nature Energy 11, (2017).

  • Köberle, A. C. et al. The cost of mitigation revisited. Nature Climate Change 11, pp. 1035–1045, (2021)

  • Zegeer, M. L., Peer, R. A. M. & Haas, J. Can residential energy systems withstand the heat? Quantifying solar photovoltaic and heat pump yields for future New Zealand climate conditions. Environmental Research: Infrastructure and Sustainability 5, 015012 (2025).

    ADS 

    Google Scholar 

  • Scholz, Y., Gils, H. C. & Pietzcker, R. C. Application of a high-detail energy system model to derive power sector characteristics at high wind and solar shares. Energy Econ 64, 568–582 (2017).

    Article 

    Google Scholar 

  • McPherson, M., Mehos, M. & Denholm, P. Leveraging concentrating solar power plant dispatchability: A review of the impacts of global market structures and policy. Energy Policy 139, 111335 (2020).

    Article 

    Google Scholar 

  • Schmidt, O., Melchior, S., Hawkes, A. & Staffell, I. Projecting the Future Levelized Cost of Electricity Storage Technologies. Joule 3, 81–100 (2019).

    Article 

    Google Scholar 

  • Ardashir, J. F. & Ghadim, H. V. Large-scale energy storages in joint energy and ancillary multimarkets. Energy Storage in Energy Markets: Uncertainties, Modelling, Analysis and Optimization 265–285 (2021).

  • Handique, A. J., Peer, R. A. M. & Haas, J. Understanding the Challenges for Modelling Islands’ Energy Systems and How to Solve Them. Current Sustainable/Renewable Energy Reports 11, 95–104 (2024).

    Article 

    Google Scholar 

  • Vatankhah Ghadim, H., Peer, R. A. M., Read, E. G. & Haas, J. How much hydrogen could we need in New Zealand? Understanding the diverse hydrogen applications and their regional mapping. J R Soc N Z (2024).

  • Sterner, M. & Specht, M. Power-to-Gas and Power-to-X—The History and Results of Developing a New Storage Concept. Energies 14, 6594 (2021).

    Article 
    CAS 

    Google Scholar 

  • Breyer, C., Lopez, G., Bogdanov, D. & Laaksonen, P. The role of electricity-based hydrogen in the emerging power-to-X economy. Int J Hydrogen Energy 49, 351–359 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Pieńkowski, D. Is nuclear energy really sustainable? A critical analysis on the example of the Polish energy transition plan. Energy for Sustainable Development 78, 101376 (2024).

    Article 

    Google Scholar 

  • Bennett, A. & Serrenho, A. C. The Potential Role of Hydrogen in Decarbonization: Exploring Global Supply Chain Impacts and Hydrogen Use in the United Kingdom. Environ Sci Technol (2025).

  • Vatankhah Ghadim, H., Canessa, R., Haas, J. & Peer, R. Electrolyzer cost projections compared to actual market costs: A Critical Analysis. in IEEE PES ISGT ASIA 2023 IEEE proceedings 5 (IEEE, Auckland, 2023).

  • Vatankhah Ghadim, H. et al. Are we too pessimistic? Cost projections for solar photovoltaics, wind power, and batteries are over-estimating actual costs globally. Appl Energy (2025).

  • OEDI. Utility-Scale PV | Technologies | Electricity | ATB | NREL. (2020).

  • IEA PVPS. Snapshot of Global PV Markets 2025 Task 1 Strategic PV Analysis and Outreach PVPS. (2025).

  • Jäger-Waldau, A. Snapshot of photovoltaics − March 2025. EPJ Photovoltaics 16, 22 (2025).

    Article 
    ADS 

    Google Scholar 

  • OEDI. 2024 Annual Technology Baseline (ATB) Cost and Performance Data for Electricity Generation Technologies. Open Energy Data Initiative (OEDI) (2024).

  • OEDI. 2023 Annual Technology Baseline (ATB) Cost and Performance Data for Electricity Generation Technologies. Open Energy Data Initiative (OEDI) (2023).

  • OEDI. 2022 Annual Technology Baseline (ATB) Cost and Performance Data for Electricity Generation Technologies. Open Energy Data Initiative (OEDI) (2022).

  • OEDI. 2021 Annual Technology Baseline (ATB) Cost and Performance Data for Electricity Generation Technologies. Open Energy Data Initiative (OEDI) (2021).

  • OEDI. 2020 Annual Technology Baseline (ATB) Cost and Performance Data for Electricity Generation Technologies. Open Energy Data Initiative (OEDI) (2020).

  • OEDI. 2019 Annual Technology Baseline (ATB) Cost and Performance Data for Electricity Generation Technologies. Open Energy Data Initiative (OEDI) (2019).

  • OEDI. 2018 Annual Technology Baseline (ATB) Cost and Performance Data for Electricity Generation Technologies. Open Energy Data Initiative (OEDI) (2018).

  • OEDI. 2017 Annual Technology Baseline (ATB) Cost and Performance Data for Electricity Generation Technologies. Open Energy Data Initiative (OEDI) (2017).

  • OEDI. 2016 Annual Technology Baseline (ATB) Cost and Performance Data for Electricity Generation Technologies. Open Energy Data Initiative (OEDI) (2016).

  • OEDI. 2015 Annual Technology Baseline (ATB) Cost and Performance Data for Electricity Generation Technologies. Open Energy Data Initiative (OEDI) (2015).

  • IEA. World Energy Outlook 2024. (2024).

  • IEA. World Energy Outlook 2023. (2023).

  • IEA. World Energy Outlook 2022. (2022).

  • IEA. World Energy Outlook 2021. (2021).

  • IEA. World Energy Outlook 2020. (2020).

  • IEA. World Energy Outlook 2019. (2019).

  • IEA. World Energy Outlook 2018. (2018).

  • IEA. World Energy Outlook 2017. (2017).

  • IEA. World Energy Outlook 2016. (2016).

  • IEA. World Energy Outlook 2015. (2015).

  • IEA. World Energy Outlook 2014. (2014).

  • IEA. World Energy Outlook 2013. (2013).

  • IEA. World Energy Outlook 2012. (2012).

  • IEA. World Energy Outlook 2011. (2011).

  • IEA. World Energy Outlook 2010. (2010).

  • IEA. World Energy Outlook 2009. (2009).

  • IEA. World Energy Outlook 2008. (2008).

  • IEA. World Energy Outlook 2006. (2006).

  • IEA. World Energy Outlook 2004. (2004).

  • IEA. World Energy Outlook 2003. (2003).

  • IEA. World Energy Outlook 2002. (2002).

  • IEA. World Energy Outlook 2001. (2001).

  • Breyer, C. et al. Reflecting the energy transition from a European perspective and in the global context—Relevance of solar photovoltaics benchmarking two ambitious scenarios. Progress in Photovoltaics: Research and Applications 31 (2023).

  • BNEF. Hydrogen Economy Outlook. Bloomberg New Energy Finance (2020).

  • BNEF. New Energy Outlook 2021. BNEF (2021).

  • BNEF. Lithium-Ion Battery Pack Prices Hit Record Low of $139/kWh. BNEF (2023).

  • BP. BP Energy Outlook 2022 edition. British Petroleum 109, (2022).

  • Gordon, D. Battery market forecast to 2030: Pricing, capacity, and supply and demand. E Source (2022).

  • DEA. Technology Data for Generation of Electricity and District Heating. Danish Energy Agency (2025).

  • Graham, P., Hayward, J. & Foster, J. GenCost 2024-25 Consultation Draft. www.csiro.au/en/contact (2025).

  • Kost, C., Müller, P., Sepúlveda Schweiger, J., Fluri, V. & Thomsen, J. Levelized Cost of Electricity – Renewable Energy Technologies (Jul. 2024). www.ise.fraunhofer.de (2024).

  • Graham, P., Hayward, J. & Foster, J. GenCost 2023-24 Final Report. www.csiro.au/en/contact (2024).

  • Graham, P., Hayward, J., Foster, J. & Havas, L. GenCost 2022-23 Final Report. www.csiro.au/en/contact (2023).

  • Bogdanov, D. et al. Energy transition for Japan: Pathways towards a 100% renewable energy system in 2050. IET Renewable Power Generation 17 (2023).

  • Mandys, F., Chitnis, M. & Silva, S. R. P. Levelized cost estimates of solar photovoltaic electricity in the United Kingdom until 2035. Patterns 4 (2023).

  • Neumann, F., Zeyen, E., Victoria, M. & Brown, T. The potential role of a hydrogen network in Europe. Joule 7 (2023).

  • Transpower. TPM Determination: BBC Assumptions Book. (2023).

  • Sens, L., Neuling, U. & Kaltschmitt, M. Capital expenditure and levelized cost of electricity of photovoltaic plants and wind turbines – Development by 2050. Renew Energy 185 (2022).

  • Insel, M. A., Sadikoglu, H. & Melikoglu, M. Assessment and determination of 2030 onshore wind and solar PV energy targets of Türkiye considering several investment and cost scenarios. Results in Engineering 16 (2022).

  • Gulagi, A. et al. The role of renewables for rapid transitioning of the power sector across states in India. Nat Commun 13 (2022).

  • Makhloufi, S., Khennas, S., Bouchaib, S. & Arab, A. H. Multi-objective cuckoo search algorithm for optimized pathways for 75% renewable electricity mix by 2050 in Algeria. Renew Energy 185 (2022).

  • Gandhi, K., Apostoleris, H. & Sgouridis, S. Catching the hydrogen train: economics-driven green hydrogen adoption potential in the United Arab Emirates. Int J Hydrogen Energy 47 (2022).

  • George, J. F., Müller, V. P., Winkler, J. & Ragwitz, M. Is blue hydrogen a bridging technology? – The limits of a CO2 price and the role of state-induced price components for green hydrogen production in Germany. Energy Policy 167, 113072 (2022).

    Article 
    CAS 

    Google Scholar 

  • Janssen, J. L. L. C. C., Weeda, M., Detz, R. J. & van der Zwaan, B. Country-specific cost projections for renewable hydrogen production through off-grid electricity systems. Appl Energy 309 (2022).

  • Gilmore, N. et al. Clean energy futures: An Australian based foresight study. Energy 260, 125089 (2022).

    Article 

    Google Scholar 

  • Graham, P., Hayward, J., Foster, J. & Havas, L. GenCost 2021-22 Final Report. www.csiro.au/en/contact (2022).

  • IEA. Hydrogen in Latin America: From near-Term Opportunities to Large-Scale Deployment. Hydrogen in Latin America (2021).

  • Kost, C., Shammugam, S., Fluri, V., Peper, D., Memar, A. D., & Schlegel, T. Levelized Cost of Electricity – Renewable Energy Technologies. June 2021. pp. 1–45. Fraunhofer ISE. www.ise.fraunhofer.de (2021)

  • Robert, B. & Brown, E. B. Proyecciones de costos inversión y LCOE. (2021).

  • Lu, X. et al. Combined solar power and storage as cost-competitive and grid-compatible supply for China’s future carbon-neutral electricity system. Proc Natl Acad Sci USA 118 (2021).

  • Graham, P., Hayward, J., Foster, J. & Havas, L. GenCost 2020-21 Final Report. CSIRO (2021).

  • AEMO. 2021 Costs and Technical Parameter Review. (2021).

  • Zhang, X., Dong, X. & Li, X. Study of China’s Optimal Concentrated Solar Power Development Path to 2050. Front Energy Res 9 (2021).

  • UK Deparment of Business Energy & Industrial. Hydrogen Production Costs 2021. (2021).

  • WEC. Decarbonised Hydrogen Imports into the European Union: Challenges and Opportunities. (2021).

  • Repenning, J. et al. Projektionsbericht 2021 Für Deutschland. (2021).

  • Graham, P., Hayward, J., Foster, J. & Havas, L. GenCost 2019-20 Final Report. (2020).

  • MME & EPE. Plano Nacional de Energia – PNE 2050. Plano Nacional de Energia – PNE 2050 53 (2020).

  • Barbosa, J., Dias, L. P., Simoes, S. G. & Seixas, J. When is the sun going to shine for the Brazilian energy sector? A story of how modelling affects solar electricity. Renew Energy 162 (2020).

  • Ghorbani, N., Aghahosseini, A. & Breyer, C. Assessment of a cost-optimal power system fully based on renewable energy for Iran by 2050 – Achieving zero greenhouse gas emissions and overcoming the water crisis. Renew Energy 146 (2020).

  • ETIP. Fact Sheets about Photovoltaics (PV) – The Cost of PV Systems. European Technology & Innovation Platform (2020).

  • SERIS. UPDATE of the Solar Photovoltaic (PV) Roadmap for Singapore. 76, (2020).

  • Chaianong, A., Bangviwat, A., Menke, C., Breitschopf, B. & Eichhammer, W. Customer economics of residential PV–battery systems in Thailand. Renew Energy 146 (2020).

  • Mongird, K. et al. An evaluation of energy storage cost and performance characteristics. Energies. 13, 3307 (2020).

  • He, X. et al. Greenhouse gas consequences of the China dual credit policy. Nat Commun 11 (2020).

  • Vartiainen, E., Masson, G., Breyer, C., Moser, D. & Román Medina, E. Impact of weighted average cost of capital, capital expenditure, and other parameters on future utility-scale PV levelised cost of electricity. Progress in Photovoltaics: Research and Applications 28 (2020).

  • Deorah, S. M., Abhyankar, N., Arora, S., Gambhir, A. & Phadke, A. Estimating the Cost of Grid-Scale Lithium-Ion Battery Storage in India Energy Technologies Area Lawrence Berkeley National Laboratory. (2020).

  • Resch, G. et al. Market Uptake of Concentrating Solar Power in Europe: Model-Based Analysis of Drivers and Policy Trade-Offs Deliverable 8.2. uptake of concentrating solar power in Europe (final version).pdf (2020).

  • Mahone, A. et al. Hydrogen Opportunities in a Low-Carbon Future An Assessment Of Long-Term Market Potential in the Western United States. (2020).

  • Hall, W., Spencer, T., Renjith, G. & Dayal, S. The Potential Role of Hydrogen in India: A Pathway for Scaling-up Low Carbon Hydrogen across the Economy. Sustainablefinance.Hsbc.Com (2020).

  • Gallardo, F. I. et al. A Techno-Economic Analysis of solar hydrogen production by electrolysis in the north of Chile and the case of exportation from Atacama Desert to Japan. Int J Hydrogen Energy 46 (2021).

  • Peterson, D., Vickers, J. & Desantis, D. DOE Hydrogen and Fuel Cells Program Record: Hydrogen Production Cost From PEM Electrolysis 2019. DOE Hydrogen and Fuel Cells Program Record (2020).

  • ETIP. Fact Sheets about Photovoltaics (PV) – The Cost of PV Systems. (2019).

  • Tlili, O., Mansilla, C., Frimat, D. & Perez, Y. Hydrogen market penetration feasibility assessment: Mobility and natural gas markets in the US, Europe, China and Japan. Int J Hydrogen Energy 44 (2019).

  • ETC. China 2050: A Fully Developed Rich Net-Zero Economy. Online (2019).

  • Graham, P., Hayward, J., Foster, J., Story, J. & Havas, L. GenCost 2018 Final Report. (2018).

  • Kost, C., Shammugam, S., Jülch, V., Nguyen, H.-T. & Schlegl, T. Levelized Cost of Electricity – Renewable Energy Technologies (Mar. 2018). www.ise.fraunhofer.de (2018).

  • Hayward, J. A. & Graham, P. W. Electricity Generation Technology Cost Projections. (2017).

  • ETIP. Fact Sheets about Photovoltaics (PV) – The Cost of PV Systems. www.etip-pv.eu (2017).

  • Craigen, J. et al. Australian Power Generation Technology Report. www.co2crc.com.au/publications (2015).

  • Kost, C. et al. Levelized Cost of Electricity – Renewable Energy Technologies (Nov. 2013). www.ise.fraunhofer.de (2013).

  • Kost, C., Schlegl, T., Thomsen, J., Nold, S. & Mayer, J. Levelized Cost of Electricity – Renewable Energies (May 2012). www.ise.fraunhofer.de (2012).

  • DNV. Energy Transition Outlook 2023: A global and regional forecast to 2050. DNV, Remi Eriksen (2023).

  • Abbott, B. W. et al. Accelerating the Renewable Energy Revolution to Get Back to the Holocene. Earth’s Future 11, e2023EF003639, (2023).

  • Rozon, F., McGregor, C. & Owen, M. Long-Term Forecasting Framework for Renewable Energy Technologies’ Installed Capacity and Costs for 2050. Energies (Basel) 16 (2023).

  • US DoE. Financial Incentives for Hydrogen and Fuel Cell Projects. (2022).

  • DNV. Hydrogen Forecast to 2050 Energy Transition Outlook 2022. Dnv (2022).

  • Jacobson, M. Z. et al. Low-cost solutions to global warming, air pollution, and energy insecurity for 145 countries. Energy Environ Sci 15 (2022).

  • Reksten, A. H., Thomassen, M. S., Møller-Holst, S. & Sundseth, K. Projecting the future cost of PEM and alkaline water electrolysers; a CAPEX model including electrolyser plant size and technology development. Int J Hydrogen Energy 47, 38106–38113 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • IEA. Global Hydrogen Review. Global Hydrogen Review 2022 (2022).

  • Teske, S. et al. It is still possible to achieve the paris climate agreement: Regional, sectoral, and land-use pathways. Energies (Basel) 14 (2021).

  • Grant, N., Hawkes, A., Napp, T. & Gambhir, A. Cost reductions in renewables can substantially erode the value of carbon capture and storage in mitigation pathways. One Earth 4 (2021).

  • Bogdanov, D., Gulagi, A., Fasihi, M. & Breyer, C. Full energy sector transition towards 100% renewable energy supply: Integrating power, heat, transport and industry sectors including desalination. Appl Energy 283 (2021).

  • Brändle, G., Schönfisch, M. & Schulte, S. Estimating long-term global supply costs for low-carbon hydrogen. Appl Energy 302 (2021).

  • Wiser, R. et al. Expert elicitation survey predicts 37% to 49% declines in wind energy costs by 2050. Nat Energy 6 (2021).

  • Mauler, L., Duffner, F., Zeier, W. G. & Leker, J. Battery cost forecasting: A review of methods and results with an outlook to 2050. Energy and Environmental Science 14, pp. 4712–4739, (2021).

  • EPRI. Battery Energy Storage Lifecyle Cost Assessment Summary (2020).

  • Beuse, M., Steffen, B. & Schmidt, T. S. Projecting the Competition between Energy-Storage Technologies in the Electricity Sector. Joule 4 (2020).

  • Penisa, X. N. et al. Projecting the price of lithium-ion NMC battery packs using a multifactor learning curve model. Energies (Basel) 13 (2020).

  • IRENA. Hydrogen: A Renewable Energy Perspective. Report prepared for the 2nd Hydrogen Energy Ministerial Meeting in Tokyo, Japan (2020).

  • IEA. The Future of Hydrogen – Seizing today’s opportunities. International Energy Agency (2019).

  • Vatankhah Ghadim, H. Clean technologies cost projections database – V2.0 (Release July 2025). (2025).

  • General Electric. Accelerated growth of renewables and gas power can rapidly change the trajectory on climate change. (2021).

  • Osman, M. G., Strejoiu, C. V., Panait, C., Lazaroiu, A. C. & Lazaroiu, G. Microgrid Model for Evaluating the Operational Dynamics of Solar-Powered Hydrogen Production. 2024 9th International Conference on Energy Efficiency and Agricultural Engineering, EE and AE 2024 – Proceedings (2024).

  • Jayakumar, A., Madheswaran, D. K., Kannan, A. M., Sureshvaran, U. & Sathish, J. Can hydrogen be the sustainable fuel for mobility in India in the global context? Int J Hydrogen Energy 47, 33571–33596 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Fazeli, R., Longden, T. & Beck, F. J. Dynamics of price-based competition between blue and green hydrogen with net zero emissions targets. Renewable and Sustainable Energy Reviews 210, 115244 (2025).

    Article 
    CAS 

    Google Scholar 

  • Muratori, M. et al. The rise of electric vehicles—2020 status and future expectations. Progress in Energy 3, 022002 (2021).

    Article 
    ADS 

    Google Scholar 

  • Chase, J. View from the Solar Industry: We Don’t Need COP26 to Shine, But What Should We Worry About? Joule 6, 495–497 (2022).

    Article 

    Google Scholar 

  • Wang, W., Sun, H. & Yang, L. Analysis and Suggestions on the Scenarios of Integrated Development Between Natural Gas and Other Energy Resources Under the Goals of Peaking Carbon Emissions and Achieving Carbon Neutrality. 193–207 (2024).

  • Ravelli, S. Thermodynamic Assessment of Exhaust Gas Recirculation in High-Volume Hydrogen Gas Turbines in Combined Cycle Mode. J Eng Gas Turbine Power 144 (2022).

  • Moriarty, P. & Honnery, D. Review: The Energy Implications of Averting Climate Change Catastrophe. Energies 2023, 16, 6178 (2023).

    Article 
    CAS 

    Google Scholar 

  • Moriarty, P. & Honnery, D. Review: Renewable Energy in an Increasingly Uncertain Future. Applied Sciences 2023 13, 388 (2022).

    Article 

    Google Scholar 

  • link